Intrinsic ubiquitin E3 ligase activity of histone acetyltransferase Hbo1 for estrogen receptor α

نویسندگان

  • Masayoshi IIZUKA
  • Takao SUSA
  • Mimi TAMAMORI-ADACHI
  • Hiroko OKINAGA
  • Tomoki OKAZAKI
چکیده

Estrogen receptors (ER) are important transcription factors to relay signals from estrogen and to regulate proliferation of some of breast cancers. The cycling of estrogen-induced DNA binding and ubiquitin-linked proteolysis of ER potentiates ER-mediated transcription. Indeed, several transcriptional coactivators for ER-dependent transcription ubiquitinate ER. Histone acetyltransferase (HAT) Hbo1/KAT7/MYST2, involved in global histone acetylation, DNA replication, transcription, and cellular proliferation, promotes proteasome-dependent degradation of ERα through ubiquitination. However, molecular mechanism for ubiquitination of ERα by Hbo1 is unknown. Here we report the intrinsic ubiquitin E3 ligase activity of Hbo1 toward the ERα. The ligand, estradiol-17β, inhibited E3 ligase activity of Hbo1 for ERα in vitro, whereas hyperactive ERα mutants from metastatic breast cancers resistant to hormonal therapy, were better substrates for ERα ubiquitination by Hbo1. Hbo1 knock-down caused increase in ERα expression. Hbo1 is another ERα coactivator that ubiquitinates ERα.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrogen receptor α (ERα) mediates 17β-estradiol (E2)-activated expression of HBO1

BACKGROUND HBO1 (histone acetyltransferase binding to ORC1) is a histone acetyltransferase (HAT) which could exert oncogenic function in breast cancer. However, the biological role and underlying mechanism of HBO1 in breast cancer remains largely unknown. In the current study, we aimed to investigate the role of HBO1 in breast cancer and uncover the underlying molecular mechanism. METHODS Imm...

متن کامل

HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin.

HBO1, an H4-specific histone acetylase, is a coactivator of the DNA replication licensing factor Cdt1. HBO1 acetylase activity is required for licensing, because a histone acetylase (HAT)-defective mutant of HBO1 bound at origins is unable to load the MCM complex. H4 acetylation at origins is cell-cycle regulated, with maximal activity at the G1/S transition, and coexpression of HBO1 and Jade-1...

متن کامل

Structural and mechanistic insights into regulation of HBO1 histone acetyltransferase activity by BRPF2

HBO1, a member of the MYST family of histone acetyltransferases (HATs), is required for global acetylation of histone H3K14 and embryonic development. It functions as a catalytic subunit in multisubunit complexes comprising a BRPF1/2/3 or JADE1/2/3 scaffold protein, and two accessory proteins. BRPF2 has been shown to be important for the HAT activity of HBO1 toward H3K14. Here we demonstrated t...

متن کامل

A novel RING-type ubiquitin ligase breast cancer-associated gene 2 correlates with outcome in invasive breast cancer.

The RING finger family of proteins possess ubiquitin ligase activity and play pivotal roles in protein degradation and receptor-mediated endocytosis. In this study, we examined whether the breast cancer-associated gene 2 (BCA2), a novel RING domain protein, has E3 ubiquitin ligase activity and investigated its expression status in breast tumors. The full-length BCA2 gene was cloned from the hum...

متن کامل

BRCA1 counteracts progesterone action by ubiquitination leading to progesterone receptor degradation and epigenetic silencing of target promoters.

Germ-line mutations in the BRCA1 gene increase the risk of breast cancer in women, but the precise mechanistic basis for this connection remains uncertain. One popular hypothesis to explain breast tissue specificity postulates a link between BRCA1 and the action of the ovarian hormones estrogen and progesterone. Given the relevance of progesterone for normal mammary development and breast cance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2017